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Localization of Non-Relativistic Particles
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This paper is a contribution to the problem of particle localization in non-relativistic
Quantum Mechanics. Our main results will be (1) to formulate the problem of localiza-
tion in terms of invariant subspaces of the Hilbert space, and (2) to show that the rigged
Hilbert space incorporates particle localization in a natural manner.
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1. INTRODUCTION

In Quantum Mechanics courses, we are taught that the concept of trajectory
does not make any sense in the quantum realm. We are also taught that the solutions
to the Schrödinger equation are not supposed to be interpreted as real waves, but
rather as probability amplitudes—in Quantum Mechanics, what is “waving” is
probability. We are therefore encouraged to picture particles not as point-like
entities, but rather as sort of clouds of probability. This picture is reinforced by,
for example, drawings of orbitals of the Hydrogen atom, or by animations of wave
packets impinging upon a barrier.

We nevertheless like to think that when performing an experiment in the lab
with, say, atoms, the wave functions that describe the atoms are localized in the
lab. We definitely don’t picture the atomic wave functions spreading all around
space. Instead, we naively expect that we prepare clouds of probability that are
localized in the lab, and that those clouds remain localized in the lab during the
experiment. In this paper, we discuss to what extend such naive expectation holds
in non-relativistic Quantum Mechanics.

Mathematically, the problem of localization can be formulated as follows.
Given a wave function f that is localized at t = 0, does f remain localized as time
goes on? We shall see that such question is best formulated as the invariance of
subspaces of the Hilbert space under the time evolution group. Particle localization
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can therefore be reduced to the study of invariant subspaces of the Hilbert space
under time evolution.

The structure of this paper is as follows. In Section 2, we discuss three types of
localization (compact-support, polynomial and exponential) and formulate them
as the invariance of certain subspaces of the Hilbert space under time evolution. In
Section 3, we discuss the compact-support localization. Although it is well known
that compact-support localization is not possible, we anyway discuss it, for the sake
of completeness and for the sake of comparison with polynomial and exponential
localizations. In Setion 4, we discuss the theorems that are most relevant to
polynomial localization. In Section 5, we discuss exponential localization. In
Section 6, we explain how localization is built into a rigged Hilbert space. Finally,
in Section 7, we state our conclusions.

Our discussion will be elementary and, unfortunately, we shall not be able to
prove whether exponential localization holds, which is the remaining challenge of
non-relativistic particle localization.

2. THREE TYPES OF LOCALIZATION

Quantitatively, the localization of a particle is characterized by the rate at
which its wave function falls off outside the region where the particle is supposed
to be localized. There are many ways to characterize such falloff. The three most
important falloff regimes, which are also the ones we are concerned with in this
paper, are the compact-support, the polynomial and the exponential regimes (see
Fig. 1):

comp. supp. ≺ · · ·
exponential regime

︷ ︸︸ ︷

≺ e−xn ≺ · · · ≺ e−x2 ≺ e−x ≺ · · ·

polynomial regime
︷ ︸︸ ︷

≺ 1

xn
≺ · · · ≺ 1

x2
≺ 1

x
,

(2.1)

where a ≺ b indicates that the falloff “a” is stronger than the falloff “b.” Within
each regime, one can differentiate several sub-regimes. For example, in the poly-
nomial regime, one can have 1/x falloff, 1/x2 falloff, and so on.

In functional-analysis terms, the localization of particles can be formulated
by constructing subspaces of the Hilbert space whose wave functions satisfy
the desired localization conditions. Thus, for compact-support localization, we
construct the space �c.s. of functions f that vanish beyond a finite distance Rf > 0:

�c.s. = {f ∈ L2 | |f (x)| = 0 for |x| > Rf ; and additional properties} , (2.2)

where in “additional properties” we include other extra properties that the wave
functions may have to satisfy (e.g., differentiability). For polynomial localization
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Fig. 1. Schematic representation of the three regimes of particle localization.

of order n, we define the space of wave functions that fall off faster than xn:

�pol = {f ∈ L2 | |xnf (x)| → 0 when |x| → ∞ ; and additional properties} .

(2.3)
We can also demand polynomial localization to all orders, as with the Schwartz
space. For exponential localization of order n, we define the space of wave func-
tions that fall off faster than e|x|n :

�exp = {f ∈ L2 | |e|x|nf (x)| → 0 when |x| → ∞ ; and additional properties} .

(2.4)
We note that the “additional properties” of Eqs. (2.2)–(2.4) may be necessary to
ensure localization. For example, we shall see that polynomial localization does
not hold unless additional properties are demanded from the wave functions.

Now, a particle is localized in a compact-support, polynomial or exponential
sense when the spaces �c.s., �pol or �exp remain invariant under the time evolution
group:

e−iH t�c.s. ⊂ �c.s. , (2.5)

e−iH t�pol ⊂ �pol , (2.6)

e−iH t�exp ⊂ �exp . (2.7)
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Therefore, finding out whether a particle can be localized in a compact-support,
polynomial or exponential sense is equivalent to finding out whether the invari-
ance (2.5)–(2.7) holds for a given Hamiltonian. In the following three sections,
we list some of the results that guarantee or forbid such invariance.

3. COMPACT-SUPPORT LOCALIZATION

It is well known that if a non-relativistic particle is initially confined to a finite
region of space, then it immediately develops infinite tails, as one could already
expect from the lack of an upper limit for the propagation speed in non-relativistic
Quantum Mechanics. Thus, compact support localization is impossible,

e−iH t�c.s. ⊂/ �c.s. . (3.1)

The free Hamiltonian H0 provides a transparent way of seeing why a particle
initially localized in a finite region immediately spreads throughout all space. One
simply has to calculate the time evolution of a wave packet ϕ from the well-known
expression for the free propagator (h = 1):

ϕ(x; t) = e−iH0tϕ(x) =
( m

2πit

)3/2
∫

d3y eim|x−y|2/(2t)ϕ(y) . (3.2)

The wave function ϕ(x; t) is the superposition of the amplitudes produced by the
waves emitted at t = 0 from all points y in space. Thus, even when ϕ(x) is zero
outside a finite region V0 at t = 0, at any other time, ϕ(x; t) will be non-zero for
all x, because the free propagator “connects” any point x in space with those in
the region V0.

An extreme case of compact-support localization occurs when the wave
function is completely supported at a point x0 of space, that is, when the initial
wave function is the delta function δ(x − x0). For the free case, the time evolution
of the delta function is given by

e−iH0t δ(x − x0) =
( m

2πit

)3/2
∫

d3y eim|x−y|2/(2t)δ(y − x0)

=
( m

2πit

)3/2
eim|x−x0|2/(2t) . (3.3)

Thus, if a free particle is initially localized at x0, then it instantaneously develops
sinusoidal tails all around space.

A theorem by Hegerfeldt (1994, 1998) (see also Galindo, 1968; Galindo
and Pascual, 1990) traces the impossibility of compact-support localization to the
semiboundedness of the Hamiltonian. More precisely, if at t = 0 the wave function
is compactly supported in a region V0, and if the Hamiltonian that drives the time
evolution is bounded from below, then

(i) either the wave function remains compactly supported in V0,
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Fig. 2. The potential of Eq. (3.4).

(ii) or the wave function instantaneously develops “tails” that reach all regions
of space. The spread is all over space, except for “holes” which, if they
exist, will persist for all times.

In most cases, possibility (ii) applies. In some cases, however, possibility (i)
applies. For example, the following potential (see Fig. 2) is able to trap particles
in a finite region of space:

V (x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 −∞ < x < a1 region I

∞ a1 < x < a2 region II

0 a2 < x < a3 region III

∞ a3 < x < a4 region IV

0 a4 < x < ∞ region V .

(3.4)

We simply have to throw the particle into region III, where it will remain forever.
This potential also illustrates the possibility of “holes:” If we throw the particle in
the regions I or V, then region III will remain as a “hole.”

We recall that even bound states are in general not localized in a finite region
of space. For example, the bound states of the Hydrogen atom fall off like an
exponential multiplied by a Laguerre polynomial, and the bound states of the
Harmonic oscillator fall off like a Gaussian multiplied by a Hermite polynomial.

Since compact-support localization is in general not possible, the question
now is whether the exponential and the polynomial localizations are possible, that
is, whether �pol and �exp are invariant under the time evolution group.

4. POLYNOMIAL LOCALIZATION

Several theorems, especially those by Hunziker (1966) and by Radin and
Simon (1978), guarantee that polynomial localization is possible when the
potential is “reasonable.” By “reasonable” we mean that there should exist an
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a < 1 and a b < ∞ such that

‖Vf ‖ ≤ a‖H0f ‖ + b‖f ‖ ; (4.1)

that is, V can be seen as a small perturbation to the kinetic energy, in the sense
of Kato (1966). For such potentials, we can find appropriate spaces �pol that
incorporate some type of polynomial localization and that remain invariant under
the time evolution group:

e−iH t�pol ⊂ �pol . (4.2)

In order to state Hunziker’s theorem, we need first some definitions: xn ≡
x

n1
1 x

n2
2 x

n3
3 , n being the multi-index (n1, n2, n3) with nj integer, nj ≥ 0; |n| =

∑

i ni ; k ≤ n means ki ≤ ni for i = 1, 2, 3. For any multi-index n, xn also denotes
the operator multiplication by the function xn. For any multi-index n, we define a
linear subset Dn of L2(R3) and a norm ‖ · ‖n on Dn by

Dn ≡
⋂

k≤n

m≤|n|−|k|

D(xkHm) , (4.3)

‖f ‖n ≡ sup
k≤n

m≤|n|−|k|
‖xkHmf ‖ , (4.4)

where D(xkHm) denotes the domain of the operator xkHm, and m denotes an
integer greater than or equal to 0.

Theorem 1. (Hunziker) Under the assumption of Eq. (4.1), the following
holds for any multi-index n:

(a) Dn is invariant under the time evolution group:

e−iH tDn ⊂ Dn . (4.5)

(b) For any f ∈ Dn, e−iH tf is continuous in t in the sense of the norm ‖ · ‖n,
and there exists a constant cn such that

‖e−iH tf ‖n ≤ cn(1 + |t |)|n|‖f ‖n . (4.6)

Since the norms of Eq. (4.4) imply that the elements of Dn fall off faster than
1/xn at infinity, Theorem 1 ensures the 1/xn-localization of the elements of Dn.

Theorem 1 is valid not only in three but in any dimension, a result we shall
take advantage of in Section 6. In addition, when the potential is a C∞-function
with bounded derivatives, Theorem 1 implies that the Schwartz space is invariant
under time evolution:

Corollary. (Hunziker) If V (x) is a bounded C∞-function on R
3 with bounded

derivatives, thenS(R3) is invariant under the unitary group e−iH t and the mapping
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(ϕ, t) → e−iH tϕ of S(R3) × R onto S(R3) is continuous (in the sense of the
conventional topology of S(R3)).

Therefore, when a particle is initially localized better than any polynomial of
x, and when the potential that drives the evolution of the particle is a C∞-function,
then the particle remains localized better than any polynomial of x as time goes
on.

A result by Radin and Simon resembles and complements Hunziker’s
theorem:

Theorem 2. (Radin-Simon) Let V obey Eq. (4.1). Let

S1 ≡ {f ∈ L2 | |x|f ∈ L2, |P |f ∈ L2} , (4.7)

S2 ≡ {f ∈ L2 | x2f ∈ L2, P 2f ∈ L2} , (4.8)

and respectively equip these spaces with the norms

‖f ‖1 ≡ (‖f ‖2 + ‖|x|f ‖2 + ‖|P |f ‖2)1/2 , (4.9)

‖f ‖2 ≡ (‖f ‖2 + ‖|x|2f ‖2 + ‖P 2f ‖2)1/2 . (4.10)

Then S1 and S2 remain invariant under e−iH t ,

e−iH tS1 ⊂ S1 , (4.11)

e−iH tS2 ⊂ S2 , (4.12)

and

‖e−iH tf ‖1 ≤ (c + d |t |) ‖f ‖1 , (4.13)

‖e−iH tf ‖2 ≤ (c′ + d ′t2) ‖f ‖1 , (4.14)

where c, d, c′, d ′ are constants.

At infinity, the elements of S1 and S2 fall off faster than 1/|x| and 1/x2,
respectively. Thus, Theorem 2 ensures the 1/|x|- and the 1/x2-localization of the
elements of S1 and S2, respectively.

Theorem 2 can be extended to higher polynomial falloffs; more precisely,
under the conditions of Theorem 2, the space

Sn = {f ∈ L2 | |x|nf ∈ L2 |P |nf ∈ L2} (4.15)

is invariant under e−iH t , for each positive n (Ozawa, 1990).
It is interesting that the falloff properties of a wave function f are not

preserved under e−iH t when f has some singularities (Ozawa, 1990). Thus, a
wave function f that is polynomially localized at t = 0 will remain polynomially
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localized only if f is smooth enough. Hence, the space �pol of Eq. (2.3) always
needs some “additional properties” in order to remain invariant under e−iH t .

There are other results on polynomial localization, all of them stating basically
that polynomial localization is possible when the wave function is smooth enough.
We shall not list all those results here; instead, we shall move on to the problem
of exponential localization.

5. EXPONENTIAL LOCALIZATION

Contrary to polynomial localization, there doesn’t seem to exist accurate
results that guarantee exponential localization of non-relativistic particles. Some
basic results, however, indicate that exponential localization is possible.

It is well known that a Gaussian wave packet remains Gaussian under free
time evolution. Thus, if the wave function of a free particle has Gaussian tails at
t = 0, and if that wave function is smooth enough, we expect that those Gaussian
tails will remain so as time goes on.

If the time evolution is driven by a Hamiltonian H = H0 + V , we expect that
Gaussian tails remain so as time goes on, provided that the potential V is a small
perturbation to H0.

In a scattering system, far from the potential region, the time evolution is
essentially governed by the free Hamiltonian. Thus, Gaussian tails should be
preserved in scattering processes.

We therefore expect that for reasonable potentials and for smooth wave
functions, exponential localization is possible. However, the precise statements
(that is, the analogs of Theorems 1 and 2) on exponential localization are still
lacking.

To finish this section, we note that Bialynicki-Birula has shown that the
exponential localization of photons is possible Bialynicki-Birula (1998) (see also
Saari et al., 2004).

6. THE RIGGED HILBERT SPACE AND LOCALIZATION

The rigged Hilbert space is emerging as the natural mathematical setting
for quantum mechanical continuous and resonance spectra. Surprisingly enough,
the rigged Hilbert space of a system tells us a great deal about the localization
properties of that system.

6.1. The Rigged Hilbert Space and Polynomial Localization

A quantum mechanical system is generally described by an algebra A of
observables. These observables are defined as self-adjoint operators on a Hilbert
space H. More often than not, those operators are unbounded and have continuous



1994 Madrid

spectrum, the reason for which one needs to construct the following rigged Hilbert
spaces:

�pol ⊂ H ⊂ �′
pol , (6.1)

�pol ⊂ H ⊂ �×
pol . (6.2)

Here, �pol is the maximal invariant subspace of the algebra A, and �′
pol and �×

pol
are respectively the dual and the antidual spaces of �pol. The space �pol is the
largest subspace of the Hilbert space that remains invariant under the action of the
observables of the algebra. The spaces �′

pol and �×
pol respectively contain the bras

and the kets of the observables de la Madrid (2001, 2004, 2005).
In order to see how the rigged Hilbert spaces (6.1)–(6.2) incorporate poly-

nomial localization, we shall first consider the example of a spinless particle
impinging on a rectangular barrier potential de la Madrid (2004, 2005). For this
system, the algebra of observables is generated by the position, the momentum
and the energy operators:

Qf (x) = xf (x) , (6.3)

Pf (x) = −i
d

dx
f (x) , (6.4)

Hf (x) = − 1

2m

d2

dx2
f (x) + V (x)f (x) , (6.5)

where

V (x) =

⎧

⎪
⎨

⎪
⎩

0 −∞ < x < a

V0 a < x < b

0 b < x < ∞
(6.6)

is the one-dimensional rectangular barrier potential. The maximal invariant sub-
space of this algebra is given by a Schwartz-like space of test functions de la
Madrid (2004), which we denote by S(R − {a, b}). This space can be written as

S(R − {a, b}) =
∞
⋂

n=0

Dn , (6.7)

with Dn given by Eq. (4.3). The potential (6.6) satisfies Kato’s condition (4.1),
because

‖Vf ‖ ≤ V0 ‖f ‖ . (6.8)

We are therefore allowed to apply Theorem 1. Since by Theorem 1 each Dn is
invariant under e−iH t , so is S(R − {a, b}),

e−iH tS(R − {a, b}) ⊂ S(R − {a, b}) . (6.9)
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This invariance, together with the polynomial falloff of the elements of S(R−
{a, b}), ensures the polynomial localization of the elements of S(R−
{a, b}).

From the above simple example, we can draw quite general conclusions. In
general, the algebra of a non-relativistic system will always contain the position,
the momentum and the energy operators. Hence, the elements of the maximal
invariant subspace of the algebra, which is the space �pol of the rigged Hilbert
spaces (6.1)–(6.2), must fall off faster than any power of the position coordinate.
Since for a large class of systems Hunziker’s theorem ensures the invariance of
�pol under e−iH t , the elements of �pol will in general be localized better than any
polynomial.

It is important to note that the rigged Hilbert spaces (6.1)–(6.2) arise from
properties of the algebra of the system (�pol is the maximal invariant subspace of
the algebra). Therefore, the polynomial localization built into those rigged Hilbert
spaces, rather than being imposed by hand, arises from properties of the system.

6.2. The Rigged Hilbert Space and Exponential Localization

Quantum mechanical resonances are described by the Gamow states, see
e.g. (de la Madrid, 2001; de la Madrid and Gadella, 2002). In the position repre-
sentation, these states blow up exponentially at infinity. In order to control such
exponential blow-up, we need a space �exp of test functions that fall off faster
than real exponentials (Bollini et al., 1996a,b; de la Madrid, 2001). The space
�exp then yields two rigged Hilbert spaces in a natural way:

�exp ⊂ H ⊂ �′
exp , (6.10)

�exp ⊂ H ⊂ �×
exp . (6.11)

Here, �′
exp and �×

exp are respectively the dual and the antidual spaces of �exp. The
space �exp is the largest subspace of the Hilbert space that remains invariant under
the action of the observables of the algebra and whose elements fall off faster than
any real exponential. The space �′

exp contains the Gamow bras, whereas the space
�×

exp contains the Gamow kets.
The space �exp must be invariant under e−iH t , since such invariance is needed

in the definition of the time evolution of the Gamow states. Thus, the elements of
�exp must be exponentially localized.

It is important to realize that the Gamow states are properties of the Hamil-
tonian, and therefore so are the rigged Hilbert spaces (6.10)–(6.11). Hence, the
exponential localization built into those rigged Hilbert spaces, rather than being
imposed by hand, arises from properties of the system.

We note, however, that a satisfactory �exp has not yet been constructed
for specific, simple examples. There are some proposals, though. For instance,
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Parravicini et al. (1980) have proposed the space of infinitely differentiable
functions with compact support on the positive real line, C∞

0 (0,∞), as the space
�exp. But we saw in Section 3. that C∞

0 (0,∞) is not invariant under e−iH t for
(almost) any t and any Hamiltonian, and therefore C∞

0 (0,∞) is inappropriate as
space of test functions for the Gamow states.

7. CONCLUSIONS

We have seen that the problem of localization is best formulated as the
invariance of subspaces of the Hilbert space under the time evolution group. We
have also seen that compact-support localization is not possible, that polynomial
localization is possible, and that exponential localization is desirable and likely
to be possible. Thus, in principle, we are not able to confine the wave packet of
a particle to a finite region of space, although we can make the tails of the wave
function fall off faster than polynomials and (probably) exponentials.

We have also seen that the rigged Hilbert space of a system incorporates
localization in a natural way. The maximal invariant subspace of an algebra will
in general entail polynomial localization, and the space of test functions for the
Gamow states will in general entail exponential localization.

So, what about our naive expectation that the wave function of our atoms
remains localized in the lab? Do those wave functions actually spread all around
space, albeit with polynomial or exponential tails? In principle, of course, the tails
of the wave packets reach infinity. In practice, however, such infinity is certainly
within the boundaries of the lab.
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